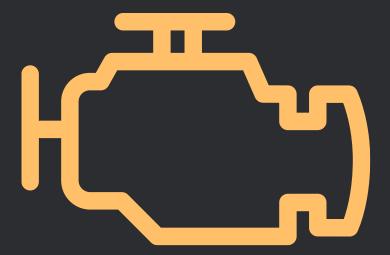

Shift-left Can Effect Positive Outcomes in Threat Detection


ANNA BELAKDirector, Office of
Cybersecurity Strategy,
Sysdig

Agenda

- Car problems
- Drift control in mutable and 2 Drift control in material immutable systems
- Aligning security controls to technical realities
- Helping others for no personal gain

There are things developers can do to make security people less sad.

Tire Pressure Monitoring System (TPMS)

5% of car accidents

involve tire problems

Accident prevention

79 deaths

10,365 injuries

75% of roadside flats

were preceded by slow leaks or underinflation

Cost reduction

3% fuel efficiency improvement

reducing fuel costs by \$2B

ALERT!: kubectl executed in container while not part of base image

How do you monitor custom applications for security?

You don't.

DevOps

DevSecOps

SecDevOps

SecDevOpsSecOps

Cloud Security Monitoring

in a software-eaten world legacy vendors new vendors CNAPP cloud providers \$20B adjacent markets not-so-adjacent markets

New world, new security

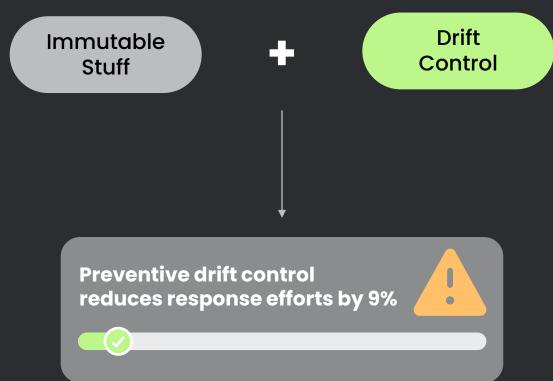
What is Drift?

Configuration drift is the divergence of a system's actual settings or state from a predefined secure baseline.

Drift in mutable environments

like legacy servers and workloads

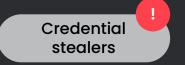
- Difficult to avoid
- Difficult to monitor
- Low fidelity source of security data


The immutable promise

of containers

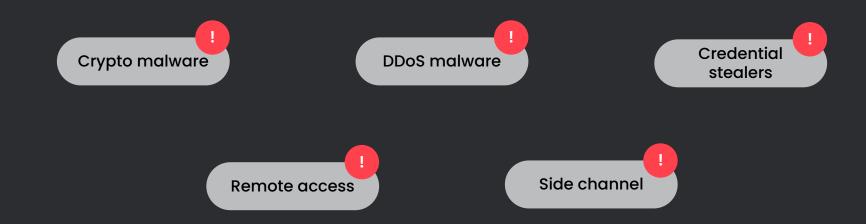
- Everything-as-code, including secure baseline configuration
- Git-based workflows and change control
- Never interactively alter live workloads, always redeploy
- Loosely coupled architecture for resilience
- Short-lived workloads

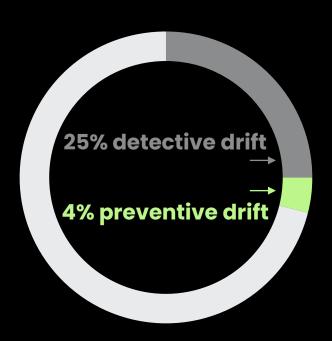
The immutable promise



Real cyber attacks

can be mitigated with drift control





Real cyber attacks

can be mitigated with drift control

Drift Control

Drift in immutable systems

in reality

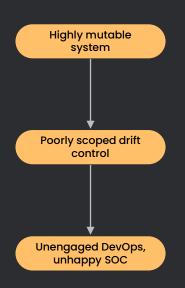
- Most things are mutable
- Dev and test environments can look very different from production
- Old habits die hard
- There's an exception for everything

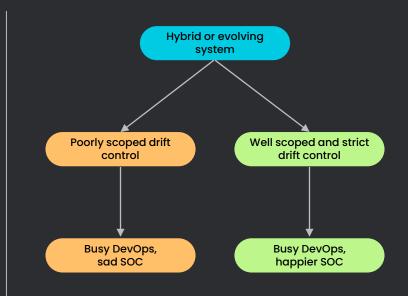
drift detected: kubectl executed in container while not part of base image

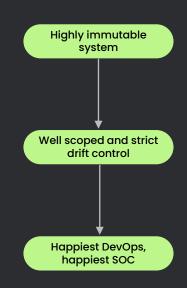
SOC: ???

DevOps: lol this is fine

drift detected: curl/wget executed in container while not part of base image


soc: seems very bad **DevOps:** lol this is fine


drift detected: some binary, not part of the application, connects to malicious IP


SOC: seems very bad **DevOps:** ??? not my problem

3 drift control scenarios

Software should be "secure-by-design."

Software security should be "designed for the software being secured."

What can you do?

Recommendations for drift control and other cloud-native detections

- Teach the application owners security operations
- Teach the SOC cloud-native everything
- Create communication channels to share the most actionable information
 - Integrate SOC requirements into appdev workflows
 - Define and enforce secure and operational baselines
 - Select and tune security controls by environment scope
 - Close tuning and troubleshooting feedback loops

Correctly implemented drift control can reduce SOC sadness by 9%

sysdig SECURI SECON

sysdig

SECURE EVERY SECOND.

